On Generalized Perfect Rings

Pınar AYDOĞDU Hacettepe University / TURKEY (Joint work with D. Herbera)

12-15 June, 2017

Definitions[A. Amini, B. Amini, Ershad, Sharif-2007]

Let R be an associative ring with 1. All modules are unital. Ring homomorphisms preserve 1.

Let F and M be right R-modules such that F_R is flat. A module epimorphism f: F → M is said to be a G-flat cover of M if Ker (f) is a small submodule of F.

Definitions[A. Amini, B. Amini, Ershad, Sharif-2007]

Let R be an associative ring with 1. All modules are unital. Ring homomorphisms preserve 1.

- Let F and M be right R-modules such that F_R is flat. A module epimorphism f: F → M is said to be a G-flat cover of M if Ker(f) is a small submodule of F.
- A ring R is called right generalized perfect (right G-perfect, for short) if every right R-module has a G-flat cover.

Definitions[A. Amini, B. Amini, Ershad, Sharif-2007]

Let R be an associative ring with 1. All modules are unital. Ring homomorphisms preserve 1.

- Let F and M be right R-modules such that F_R is flat. A module epimorphism f: F → M is said to be a G-flat cover of M if Ker(f) is a small submodule of F.
- A ring R is called right generalized perfect (right G-perfect, for short) if every right R-module has a G-flat cover.
- ► A ring R is called G-perfect if it is both left and right G-perfect.

- { perfect rings } \subseteq { *G*-perfect rings }
- { Von Neumann regular rings } \subseteq { *G*-perfect rings }
- { G-perfect rings } is closed under finite products and quotients.

Definition (due to Auslander and Enochs)

Let C be a class of right R-modules, and let M_R be a right R-module.

A module homomorphism $f: C \to M$ is a C-precover of M if it satisfies that

(i) $C \in C$;

(ii) any diagram with $C' \in \mathcal{C}$

can be completed to a commutative diagram.

Definition (due to Auslander and Enochs)

Let C be a class of right R-modules, and let M_R be a right R-module.

A module homomorphism $f: C \to M$ is a C-precover of M if it satisfies that

(i)
$$C \in C$$
;

(ii) any diagram with $C' \in \mathcal{C}$

can be completed to a commutative diagram.

The homomorphism f is a *C*-cover if, in addition, it is right minimal.

Recall that $f: C \to M$ is said to be right minimal if for any $g \in \operatorname{End}_R(C)$, f = fg implies g bijective

• Any flat precover is onto.

- Any flat precover is onto.
- Any module has a flat cover in the sense of Enochs.

- Any flat precover is onto.
- Any module has a flat cover in the sense of Enochs.
- In the case of perfect rings projective covers, flat covers and G-flat covers coincide.

- Any flat precover is onto.
- Any module has a flat cover in the sense of Enochs.
- In the case of perfect rings projective covers, flat covers and G-flat covers coincide.
- In the case of von Neumann regular rings flat covers are G-flat covers

 $\mathfrak{E} = \{B \in Mod-R | Ext_R^1(L, B) = 0 \text{ for any flat } L_R\}$ is called the class of (Enochs) cotorsion modules.

 $\mathfrak{E} = \{B \in Mod-R | Ext_R^1(L, B) = 0 \text{ for any flat } L_R\}$ is called the class of (Enochs) cotorsion modules.

Kernel of any flat cover is a cotorsion module.

 $\mathfrak{E} = \{B \in Mod - R | Ext_R^1(L, B) = 0 \text{ for any flat } L_R\}$ is called the class of (Enochs) cotorsion modules.

Kernel of any flat cover is a cotorsion module.

• Any
$$M_R$$
 fits into an exact sequence
 $0 \rightarrow B \rightarrow L \xrightarrow{g} M$
where L is flat and B is seteration g is a flat process

where L is flat and B is cotorsion. g is a flat precover.

Let R be a regular ring which is not a right V-ring.

Let R be a regular ring which is not a right V-ring. Then there exist a right R-module M such that $M \subsetneq E = E(M)$.

Let R be a regular ring which is not a right V-ring. Then there exist a right R-module M such that $M \subsetneq E = E(M)$.

▶ Case 1 Soc(E/M) = 0. $\pi : E \to E/M$ and $i : E/M \to E/M$ are both *G*-flat covers of E/M. But $E \cong E/M$.

Let R be a regular ring which is not a right V-ring. Then there exist a right R-module M such that $M \subsetneq E = E(M)$.

- ▶ Case 1 Soc(E/M) = 0. $\pi : E \to E/M$ and $i : E/M \to E/M$ are both *G*-flat covers of E/M. But $E \cong E/M$.
- Case 2 Soc(E/M) ≠ 0. There is K_R ⊆ E_R such that K/M is a simple R-module. π : K → K/M and i : K/M → K/M are both G-flat covers of K/M. But K ≇ K/M.

Some results from A. Amini, B. Amini, Ershad, Sharif-2007

- *R* is right *G*-perfect \implies *J*(*R*) is right *T*-nilpotent.
- ▶ *R* is right duo and right *G*-perfect $\implies R/J(R)$ is von Neumann regular.

Some results from A. Amini, B. Amini, Ershad, Sharif-2007

- *R* is right *G*-perfect \implies *J*(*R*) is right *T*-nilpotent.
- *R* is right duo and right *G*-perfect $\implies R/J(R)$ is von Neumann regular.

Conjecture: *R* is right *G*-perfect \implies semiregular ???

Some results from A. Amini, B. Amini, Ershad, Sharif-2007

- R is right G-perfect $\implies J(R)$ is right T-nilpotent.
- ► *R* is right duo and right *G*-perfect $\implies R/J(R)$ is von Neumann regular.

Conjecture: R is right G-perfect \implies semiregular ??? Our Answer: No!!!

Basic Definitions

A pair $(\mathcal{X}, \mathcal{Y})$ of subclasses of Mod-*R* is said to be a torsion pair if

(i) $\operatorname{Hom}_{R}(X, Y) = \{0\}$ for any $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$.

- (ii) If X_R is a right *R*-module such that $\operatorname{Hom}_R(X, Y) = \{0\}$ for any $Y \in \mathcal{Y}$ then $X \in \mathcal{X}$.
- (iii) If Y_R is a right *R*-module such that $\operatorname{Hom}_R(X, Y) = \{0\}$ for any $X \in \mathcal{X}$ then $Y \in \mathcal{Y}$.

In this case, \mathcal{X} is said to be a torsion class and \mathcal{Y} is a torsion-free class. The objects of \mathcal{X} are called torsion modules and the objects in \mathcal{Y} are called torsion-free modules.

Let $(\mathcal{X}, \mathcal{Y})$ be a torsion pair. If M_R is a right *R*-module, the largest submodule of M_R that is an object of \mathcal{X} called the torsion submodule of *M* and is denoted by t(M). *t* is indeed a functor and a radical. So that, there is an exact sequece

$$0 \rightarrow t(M) \rightarrow M \rightarrow M/t(M) \rightarrow 0$$

where $M/t(M) \in \mathcal{Y}$.

Basic Definitions

- ► A class of modules X is torsion if and only if it is closed under isomorphisms, extensions, coproducts and quotients.
- Dually, a class of modules *Y* is a torsion-free class if it is closed under isomorphism, extensions, submodules and products.

Basic Definitions

- A class of modules X is torsion if and only if it is closed under isomorphisms, extensions, coproducts and quotients.
- Dually, a class of modules *Y* is a torsion-free class if it is closed under isomorphism, extensions, submodules and products.
- Notice that if a class of modules Y is closed by products, coproducts, subobjects, quotients and extensions then Y is a torsion class and a torsion free class at the same time. Therefore, one has a triple (X, Y, Z) such that (X, Y) and (Y, Z) are torsion pairs. Such a triple is called a TTF-triple.

Let $0 \longrightarrow M \xrightarrow{h} N \xrightarrow{f} K \longrightarrow 0$ be an exact sequence of right *R*-modules and let $L \xrightarrow{g} K \longrightarrow 0$ be an onto homomorphism. We consider the pullback of *f* and *g* to obtain a commutative diagram with exact rows and columns:

- ▲ ロ ▶ ▲ 昼 ▶ ▲ 臣 ▶ 臣 の � @

In (1),

- ► $L' = \{(x, y) \in N \oplus L | f(x) = g(y) \}.$
- The maps π₁: L' → N and π₂: L' → L are restrictions of the canonical projections π₁: N ⊕ L → N and π₂: N ⊕ L → L, respectively.
- The homomorphism ε₁: M → L' is defined by ε₁(x) = (h(x), 0) for each x ∈ M, and ε₂: X → L' is defined by ε₂(y) = (0, y) for each y ∈ X.

Let $(\mathcal{X}, \mathcal{Y})$ be a torsion pair in Mod-*R* such that the associated torsion radical *t* is exact. Assume that in diagram (1), $M \in \mathcal{X}$ and K, $L \in \mathcal{Y}$.

- If X is small in L, then $\varepsilon_2(X)$ is small in L'.
- In particular, if L_R and M_R are flat, then π₁: L' → N is a G-flat cover of N.
- g is right minimal if and only if π_1 is right minimal.

Useful facts on TTF-triples

Let R and S be rings such that there is an exact sequence

$$0 \rightarrow I \rightarrow R \stackrel{\varphi}{\rightarrow} S \rightarrow 0$$

where φ is a ring morphism such that $_RS$ becomes a flat module. Consider the following classes of modules

 $\mathcal{X} = \{X \in \text{Mod-}R \mid XI = X\}$ $\mathcal{Y} = \{Y \in \text{Mod-}R \mid YI = \{0\}\}$ $\mathcal{Z} = \{Z \in \text{Mod-}R \mid \text{ann}_Z(I) = \{0\}\}$

Useful facts on TTF-triples

Let R and S be rings such that there is an exact sequence

$$0 \rightarrow I \rightarrow R \stackrel{\varphi}{\rightarrow} S \rightarrow 0$$

where φ is a ring morphism such that $_RS$ becomes a flat module. Consider the following classes of modules

 $\mathcal{X} = \{ X \in \text{Mod-}R \mid XI = X \}$

$$\mathcal{Y} = \{Y \in \text{Mod-}R \mid YI = \{0\}\}$$
$$\mathcal{Z} = \{Z \in \text{Mod-}R \mid \text{ann}_Z(I) = \{0\}\}$$

then $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ is a TTF-triple such that the torsion pair $(\mathcal{X}, \mathcal{Y})$ is hereditary and $\operatorname{Ext}_{R}^{i}(X, Y) = 0$ for any $i \geq 0, X \in \mathcal{X}$ and $Y \in \mathcal{Y}$.

Useful facts on TTF-triples

Let R and S be rings such that there is an exact sequence

$$0 \rightarrow I \rightarrow R \stackrel{\varphi}{\rightarrow} S \rightarrow 0$$

where φ is a ring morphism such that $_RS$ becomes a flat module. Consider the following classes of modules

 $\mathcal{X} = \{ X \in \text{Mod-}R \mid XI = X \}$

$$\mathcal{Y} = \{Y \in \operatorname{Mod-} R \mid YI = \{0\}\}$$

 $\mathcal{Z} = \{Z \in \operatorname{Mod-} R \mid \operatorname{ann}_Z(I) = \{0\}\}$

then $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ is a TTF-triple such that the torsion pair $(\mathcal{X}, \mathcal{Y})$ is hereditary and $\operatorname{Ext}_{R}^{i}(X, Y) = 0$ for any $i \geq 0, X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. Moreover, the torsion radical associated to the torsion class \mathcal{X} is naturally equivalent to the exact functor $- \otimes_{R} I$, and the torsion radical associated to the class \mathcal{Y} is naturally equivalent to the functor $\operatorname{Hom}_{R}(S, -)$.

Corollary

Let R and S be rings such that there is an exact sequence

$$0 \rightarrow I \rightarrow R \stackrel{\varphi}{\rightarrow} S \rightarrow 0$$

where φ is a ring morphism such that S becomes a flat R-module on the right and on the left. Then:

- (i) M_R is flat if and only if $M \otimes_R S$ is a flat right S-module and MI is a flat right R-module.
- (ii) Let M be a right S-module, then M is cotorsion as a right R-module if and only if it is cotorsion as an S-module.

Proposition[A, Herbera-2016] Let $S \subseteq T$ be an extension of rings. Let

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}.$$

Then, the following statements hold.

Let $S \subseteq T$ be an extension of rings. Let

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}.$$

Then, the following statements hold.

(i) The map $\varphi \colon R \to S$ defined by $\varphi(x_1, x_2, \dots, x_n, x, x, \dots) = x$ is a ring homomorphism with kernel

$$I = \bigoplus_{\mathbb{N}} T = \bigoplus_{i \in \mathbb{N}} e_i R,$$

where $e_i = (0, ..., 0, 1^{(i)}, 0, 0, ...)$ for any $i \in \mathbb{N}$.

Let $S \subseteq T$ be an extension of rings. Let

$$R = \{ (x_1, x_2, ..., x_n, x, x, ...) | n \in \mathbb{N}, x_i \in T, x \in S \}.$$

Then, the following statements hold.

(i) The map $\varphi \colon R \to S$ defined by $\varphi(x_1, x_2, \dots, x_n, x, x, \dots) = x$ is a ring homomorphism with kernel

$$I = \bigoplus_{\mathbb{N}} T = \bigoplus_{i \in \mathbb{N}} e_i R,$$

where $e_i = (0, ..., 0, 1^{(i)}, 0, 0, ...)$ for any $i \in \mathbb{N}$.

 (ii) I is a two-sided, countably generated idempotent ideal of R which is pure and projective on both sides. Therefore, S is flat as a right and as a left R-module.

Let $S \subseteq T$ be an extension of rings. Let

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}.$$

Then, the following statements hold.

(i) The map $\varphi \colon R \to S$ defined by $\varphi(x_1, x_2, \dots, x_n, x, x, \dots) = x$ is a ring homomorphism with kernel

$$I = \bigoplus_{\mathbb{N}} T = \bigoplus_{i \in \mathbb{N}} e_i R,$$

where $e_i = (0, ..., 0, 1^{(i)}, 0, 0, ...)$ for any $i \in \mathbb{N}$.

 (ii) I is a two-sided, countably generated idempotent ideal of R which is pure and projective on both sides. Therefore, S is flat as a right and as a left R-module.

(iii) For any $i \in \mathbb{N}$, the canonical projection into the *i*-th component $\pi_i : R \to T$ has kernel $(1 - e_i)R$ so that T is projective as a right and as a left *R*-module via the *R*-module structure induced by π_i .

Remark

Let *R* be a ring as in the Proposition. Then there is a TTF-triple $(\mathcal{X}, \mathcal{Y}, \mathcal{Z})$ associated to the pure exact sequence

$$0 \rightarrow I \rightarrow R \stackrel{\varphi}{\rightarrow} S \rightarrow 0$$

where
$$\mathcal{X} = \{X \in \text{Mod} - R \mid X = \bigoplus_{i \in \mathbb{N}} Xe_i\},\$$

 $\mathcal{Y} = \{Y \in \text{Mod} - R \mid YI = \{0\}\}\$
 $\mathcal{Z} = \{Z \in \text{Mod} - R \mid \text{ann}_Z(I) = \{0\}\}.$ Also, for any $i \in \mathbb{N}$, the split sequence

$$0 \rightarrow R(1-e_i) \rightarrow R \stackrel{\pi_i}{\rightarrow} T \rightarrow 0$$

yields a corresponding (split) TTF-triple ($\mathcal{X}_i, \mathcal{Y}_i, \mathcal{Z}_i$).

- (i) J(R) contains $J = \bigoplus_{\mathbb{N}} J(T)$. Moreover, J is essential on both sides into J(R). In particular, J(R) = 0 if and only if J(T) = 0.
- (ii) R is von Neumann regular if and only if S and T are von Neumann regular.
- (iii) Let M_R be a right R-module. Then M_R is flat if and only if $M \otimes_R S$ is a flat right S-module and, for any $i \in \mathbb{N}$, M_{e_i} is a flat right T-module.

Main Theorem [A, Herbera-2016]

Let $S \subseteq T$ be an extension of rings. Assume T is von Neumann regular and that S is right G-perfect. Then

$$R = \{(x_1, x_2, \ldots, x_n, x, x, \ldots) | n \in \mathbb{N}, x_i \in T, x \in S\}$$

is a right G-perfect ring such that J(R) = 0. Moreover, if S is a ring such that flat covers are G-flat covers, then also R satisfies this property.

• By the properties of R, it readily follows that J(R) = 0.

- By the properties of R, it readily follows that J(R) = 0.
- ▶ Let *N* be any right *R*-module. There is a pure exact sequence

$$0 \longrightarrow NI \cong \bigoplus_{i \in \mathbb{N}} Ne_i \longrightarrow N \stackrel{f}{\longrightarrow} N/NI \longrightarrow 0$$

- By the properties of R, it readily follows that J(R) = 0.
- ▶ Let *N* be any right *R*-module. There is a pure exact sequence

$$0 \longrightarrow NI \cong \bigoplus_{i \in \mathbb{N}} Ne_i \longrightarrow N \stackrel{f}{\longrightarrow} N/NI \longrightarrow 0$$

Since T is von Neumann regular, for any i ∈ N, Ne_i is a flat T-module.

- By the properties of R, it readily follows that J(R) = 0.
- ▶ Let *N* be any right *R*-module. There is a pure exact sequence

$$0 \longrightarrow NI \cong \bigoplus_{i \in \mathbb{N}} Ne_i \longrightarrow N \stackrel{f}{\longrightarrow} N/NI \longrightarrow 0$$

- Since T is von Neumann regular, for any i ∈ N, Ne_i is a flat T-module.
- Hence NI is flat as a right R-module.

Let $0 \to X \to L \xrightarrow{h} N/NI \to 0$ be a *G*-flat cover of the right *S*-module *N*/*NI*. Considering the pullback of *h* and *f* yields the following diagram with exact rows and columns

$$0 \qquad 0$$

$$\downarrow \qquad \downarrow$$

$$X = X = Kerh$$

$$\downarrow \qquad \downarrow$$

$$0 \longrightarrow NI \longrightarrow L' \qquad \stackrel{\pi_2}{\longrightarrow} \qquad \stackrel{L}{\longrightarrow} \qquad 0$$

$$\downarrow^{\pi_1} \qquad \downarrow^h$$

$$0 \longrightarrow NI \longrightarrow N \qquad \stackrel{f}{\longrightarrow} \qquad N/NI \longrightarrow 0$$

$$\downarrow \qquad \downarrow$$

$$0 \qquad 0$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三 のへの

Since the radical associated to the torsion pair (X, Y) is exact and L ∈ Y, π₁ is a G-flat cover of N.

- Since the radical associated to the torsion pair (X, Y) is exact and L ∈ Y, π₁ is a G-flat cover of N.
- ▶ Now assume, in addition, that $0 \to X \to L \xrightarrow{h} N/NI \to 0$ is a flat cover of the right *S*-module $N \otimes_R S$.

- Since the radical associated to the torsion pair (X, Y) is exact and L ∈ Y, π₁ is a G-flat cover of N.
- ▶ Now assume, in addition, that $0 \to X \to L \xrightarrow{h} N/NI \to 0$ is a flat cover of the right *S*-module $N \otimes_R S$.
- In particular, X_S is cotorsion.

- Since the radical associated to the torsion pair (X, Y) is exact and L ∈ Y, π₁ is a G-flat cover of N.
- ▶ Now assume, in addition, that $0 \to X \to L \xrightarrow{h} N/NI \to 0$ is a flat cover of the right *S*-module $N \otimes_R S$.
- In particular, X_S is cotorsion.
- ▶ X_R is also a cotorsion module, hence $0 \to X \to L' \xrightarrow{\pi_1} N \to 0$ is a flat precover of N.

- Since the radical associated to the torsion pair (X, Y) is exact and L ∈ Y, π₁ is a G-flat cover of N.
- ▶ Now assume, in addition, that $0 \to X \to L \xrightarrow{h} N/NI \to 0$ is a flat cover of the right *S*-module $N \otimes_R S$.
- In particular, X_S is cotorsion.
- ▶ X_R is also a cotorsion module, hence $0 \to X \to L' \xrightarrow{\pi_1} N \to 0$ is a flat precover of N.
- it follows that π_1 is also a flat cover.

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

Since *S* is artinian, it is *G*-perfect.

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

- Since *S* is artinian, it is *G*-perfect.
- ▶ If $\dim_F(S) = n$, then $S \hookrightarrow T = M_n(F)$ which is von Neumann regular.

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

- Since *S* is artinian, it is *G*-perfect.
- If $\dim_F(S) = n$, then $S \hookrightarrow T = \mathbb{M}_n(F)$ which is von Neumann regular.
- Therefore,

$$R = \{(x_1, x_2, ..., x_n, x, x, ...) | n \in \mathbb{N}, x_i \in T, x \in S\}$$

is G-perfect by Main Theorem.

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

- Since *S* is artinian, it is *G*-perfect.
- If $\dim_F(S) = n$, then $S \hookrightarrow T = \mathbb{M}_n(F)$ which is von Neumann regular.
- Therefore,

$$R = \{(x_1, x_2, ..., x_n, x, x, ...) | n \in \mathbb{N}, x_i \in T, x \in S\}$$

is G-perfect by Main Theorem.

▶ By the properties of the ring, J(R) = 0 and R is not von Neumann regular.

Let F be a field, and let S be any finite dimensional F-algebra such that $J(S) \neq 0$.

- Since *S* is artinian, it is *G*-perfect.
- If $\dim_F(S) = n$, then $S \hookrightarrow T = \mathbb{M}_n(F)$ which is von Neumann regular.
- Therefore,

$$R = \{ (x_1, x_2, \dots, x_n, x, x, \dots) | n \in \mathbb{N}, x_i \in T, x \in S \}$$

is G-perfect by Main Theorem.

By the properties of the ring, J(R) = 0 and R is not von Neumann regular.

For a particular realization of such a ring R consider, for example, $S = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$. In this case, T can be taken to be $M_2(F)$.

Let R be as in Example (1).

- ▶ Then, $R \subseteq \prod M_n(F) = T'$ which is a von Neumann regular ring.
- ▶ $R' = \{(x_1, x_2, \dots, x_n, x, x, \dots) | n \in \mathbb{N}, x_i \in T', x \in R\}$ is also a *G*-perfect ring.

In general, it is difficult to compute Enochs flat covers. If projective covers exist, then they coincide with Enochs flat covers. So the question is: Question 1: What is the relation, if any, between *G*-flat covers and Enochs flat covers? Question 2: Let *R* be a semiregular ring with right *T*-nilpotent Jacobson radical, is it *G*-perfect?